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Abstract (216 words) 
 
Understanding speech requires mapping fleeting and often ambiguous soundwaves to meaning. 
Humans are known to exploit their capacity to contextualize to facilitate this process, but how 
internal knowledge is used and deployed in real time remains an open question. Existing models of 
speech processing focus on either word recognition irrespective of meaning or interactions among 
abstract linguistic representations without time constraints, providing only partial insights into the 
dynamics of speech comprehension. Here, we present a model that incrementally extracts multiple 
levels of information from continuous speech signals in real time, based on the inversion of a 
generative model that represents the listener’s internal knowledge of linguistic and non-linguistic 
processing levels in a nested temporal hierarchy. In each hierarchy, the model periodically 
incorporates bottom-up incoming evidence to update its internal representations and generate new 
top-down predictions. We show that a context level, beyond linguistic representations, can provide 
the model with semantic predictions informed by sensory inputs, crucial for the disambiguation 
among multiple meanings of the same word. We also show that hierarchical predictions can reduce 
peripheral processing effort via minimizing uncertainty and prediction error, especially when sensory 
precisions become degraded. With this proof-of-concept model we demonstrate that the 
deployment of hierarchical predictions is a possible strategy for the brain to utilize structured 
knowledge dynamically for speech comprehension.      

Introduction 

Understanding speech is a non-trivial feat. To extract information from ever-changing acoustic 
signals, our brains have to simultaneously “compress and recode linguistic input as rapidly as 
possible” for multiple representation levels (the “now-or-never” bottleneck (Christiansen and 
Chater, 2016)), while also keeping information in memory as we incrementally build up the meaning 
of an utterance (Tanenhaus et al., 1995). No computational framework to date has captured the 
transformation from continuous acoustic signal to abstract meaning: most speech processing  
models focus on either the lower-level recognition from acoustic to lexicon (Levinson, 1986, 
Mcclelland and Elman, 1986, Norris, 1994, LeCun and Bengio, 1995, Friston et al., 2021), or the 
higher-level linguistic manipulations without taking into account the constraint of elapsing time 
(Elman, 1990, Griffiths et al., 2007, Levy, 2008, Martin and Doumas, 2017, Friston et al., 2020).  

In addition to the challenge of fleeting time, speech signals are often ambiguous and imperfect. 
However, humans exhibit extraordinary flexibility in making sense of ambiguous speech. We 
constantly make inferences based on our linguistic and nonlinguistic knowledge such as speaker 
identity and semantic context. The influence of internal knowledge on speech perception takes place 
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at all processing levels, e.g. filling the gap when the acoustic details are obscured in an utterance 
(Warren, 1970, Assmann and Summerfield, 2004, Sohoglu et al., 2012, Leonard et al., 2016), or 
interpreting a sentence containing semantically ambiguous words (Swinney, 1979, Rodd et al., 
2005). Understanding how internal knowledge, both linguistic and nonlinguistic, is integrated with 
external input on the fly is key to deciphering speech processing in the brain, and explaining human’s 
extraordinary flexibility in speech comprehension. 

With the development of powerful neural networks (Devlin et al., 2018, Radford et al., 2019, Brown 
et al., 2020), it is now possible for a model to implicitly learn structured linguistic knowledge from an 
immense amount of written text, and apply such knowledge in language tasks such as coherent text 
generation. Despite their remarkable achievements in specific language tasks, these models are very 
resource-demanding and often make egregious errors showing that their performance is not rooted 
in human-like understanding of the language content (Floridi and Chiriatti, 2020). Being trained and 
evaluated on tasks involving predicting the next input, e.g. a word, it is virtually impossible for them 
to capture the abstract processing necessary for human language comprehension extending beyond 
linguistic forms (Bender and Koller, 2020). A key aspect of speech understanding consists in applying 
structured internal knowledge to extract relevant information from the input signal. How and what 
internal knowledge is deployed depends on the listener’s behavioral goal, which can range from  
“understanding the message intended by the speaker” during a conversation, “gaining useful 
knowledge” from a lecture, to simply “predicting the next word” during  an experimental task. A 
language model exploiting built-in linguistic as well as nonlinguistic knowledge, and driven by a 
behavioral goal, may hence be more powerful and polyvalent than one based on recognition and 
short-range prediction.       

A recent study from Friston et al. (Friston et al., 2020) has applied these principles in a model of 
linguistic communication, in which a simulated “questioner” adaptively asks questions to an 
“answerer” to infer hidden information about two icons. Both conversers share the same two-level 
probabilistic generative model, where values (states) of several high-level “conceptual” components 
such as semiotic generate the low-level syntax and semantic states of each sentence, which in turn 
generate the corresponding word sequence. Components of this model, however, are independent 
within each hierarchy, therefore semantic and syntax information only influence each other at 
sentence onset/offset via higher-level components. As a result, the inverse (perception) model does 
not use each incoming word to incrementally update the belief of conceptual states or to change a 
semantic state inferred from a previous word. 

Here, we establish a computational framework that applies abstract linguistic and contextual 
knowledge to incrementally extract multi-level information from the continuous speech signal. The 
model understands single sentences by assigning appropriate values to semantic roles and making 
reasonable judgements about the non-linguistic context of the utterance. Such process does not rely 
on an explicit representation of a full (Martin and Doumas, 2017, Martin, 2020) or partial (Friston et 
al., 2020) sentence, but on a probabilistic generative model that uses its linguistic and nonlinguistic 
knowledge to compose sentences in an incremental fashion. The generative model has a top context 
level that determines values of 2nd-level semantic roles, which are translated into a 3rd-level lemma 
sequences via linearized syntax rules. Each lemma produces a sequence of continuous, bottom-level 
spectro-temporal patterns via two intermediate hierarchies of finer timescales, integrating a 
biophysically plausible syllable recognition model (Hovsepyan et al., 2020). Unlike in Friston et al. 
(Friston et al., 2020), context and semantic states are maintained throughout the sentence but 
interact at the lemma rate, allowing the inverse model to modify previous estimates of these states 
with incoming evidence. During model inversion, each hierarchy sends prior estimates (predictions) 
at the rate of its subordinate level, and adjusts its posterior estimates using the discrepancy 
between the prior and the received input before sending down the next prediction. In this way, top-
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down (internal knowledge) and bottom-up (input) messages are organized in a deep temporal 
hierarchy and alternate as the speech signal unfolds, providing a possible solution to the “now-or-
never” bottleneck (Christiansen and Chater, 2016) that is also consistent with the predictive coding 
hypothesis of perception (Rao and Ballard, 1999, Friston, 2009, Clark, 2013).   

With a small scope of knowledge adapted from stimuli in MacGregor et al. (2020), the model can 
extract contexts and semantic roles from ongoing speech signals and resolve semantic ambiguity 
using new information. We show that informative top-down prediction reduces processing time and 
energy cost in speech perception compared to uninformative predictions, but overconfidence in 
prediction also compromises inference accuracy. In addition, the linguistically informed model 
structure allows for hierarchy-specific metrics for the characterization of inter- and within-hierarchy 
computations. 

This proof-of-concept model demonstrates a possible computational scheme of speech processing in 
the brain in which top-down prediction serves as a key computational mechanism for information 
exchange between hierarchies, driven by the goal of comprehension. Although we cannot draw any 
direct correspondence between the model’s computational motifs and its possible 
neurophysiological implementation, correlations between model-derived metrics and neural 
responses may provide insights into the functional roles of various neuronal signals during speech 
perception. 
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Results 

A deep hierarchical model of speech comprehension       

We developed a model of speech processing based on the idea that the goal of the listener is to 

understand the message conveyed by an utterance. Appropriate understanding entails retrieving 

useful information from the utterance and optimally mapping it to the listener’s knowledge of the 

world, not restricted to linguistic representations (Figure 1A).  Our model of the listener’s internal 

knowledge therefore consists of two parts that are both implemented in the form of probabilistic 

generative models. The first part exemplifies knowledge about the world by defining events and 

properties that are constrained by specific contexts. This knowledge reflects both the listener’s own 

beliefs about the world that do not depend on specific speakers, and its beliefs about how the 

current speaker composes a sentence to express a message, but we do not make an explicit 

distinction between the two here. For example, under the context of a tennis game, the listener 

knows (that the speaker knows) about special winning serves, about runs to return a ball etc. The 

serve or the run may be the central role in an event of winning a game, or described as having a 

certain property (e.g.: being surprising). Under a different context of a poker game, the listener 

would know some special cards in the deck that can also be part of an event or entail some property. 

The 2nd part of the model converts these events or properties into linguistic forms by choosing 

between a number of possible lemmas in an appropriate order, e.g. the special winning serve can be 

expressed as a single word “ace” early in the sentence, and finally into spoken utterances in the 

form of spectro-temporal sound patterns via a deep temporal hierarchy (Figure 1B). These two parts 

are hierarchically linked via semantics and syntax. The inversion of this generative “world 

knowledge” model fulfills the mapping from the sound patterns to abstract semantic roles and 

contexts by estimating the probability of every possible value (state) of each element (factor) in the 

knowledge hierarchy (Figure 1A), thus providing the listener with the means to understand the 

utterance produced by the speaker.  

In all, the model includes five levels, each consisting of several factors represented in rectangles in 

Figure 1A, and with multiple possible values (states) listed in Table 2 in Methods except for the 

acoustic factor.  Probabilistic mappings and transition probabilities between these values are defined 

in Methods and Appendix. The final output of the generative model (i.e. the input to the perception 

model) is the continuous spectro-temporal pattern of the speech signal sampled at 1000 Hz and 

divided into six frequency channels (see Methods). Lengths of stimuli are fixed: each sentence 

consists of 4 lemmas, each lemma of 3 syllables, and each syllable of 8 spectral vectors. Every 

spectral vector is deployed into 25ms of time-varying continuous signal, thus each syllable effectively 

has a duration of 200ms (Greenberg et al., 2003).   

Next, we show how this model understands simple sentences and deals with semantic ambiguity, 

and demonstrate the role of top-down predictions in these processes. We assessed its performance 

with different sentence stimuli and parameter settings focusing on two aspects: 1) probability 

distributions that describe the model’s beliefs (or predictions) about possible states over time, and 

2) divergence and entropy, which summarize informational changes underlying the evolution of 

beliefs (see Methods).  

Stimuli are adapted from (MacGregor et al., 2020) and illustrate the use of internal knowledge to 

disambiguate speech. All sentence stimuli in the following sections share the same structure (see 

Methods for a complete list of possible sentences):  

One more [MIDDLE WORD] wins [END WORD]. 
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The middle word can have either one unambiguous or multiple possible meanings, each meaning 

pointing to one context of the sentence. The end word either resolves the semantic ambiguity of the 

middle word or not. A disambiguating end word can also follow an unambiguous middle word 

without affecting its interpretation. 

The use of knowledge about the world to interpret speech  

We first test how the model processes speech stimuli, with a focus on the timing of the incremental 
estimation process at the top levels, where “meaning” is extracted by assigning values to semantic 
roles.  

Consider the following two sentences, A: “one more ace wins the tennis” and B: “one more ace wins 
the game”.  Both sentences contain the ambiguous word “ace”, which can be associated with a 
special serve in tennis or a special card in a poker game. The final word in the first sentence 
disambiguates “ace” to mean a special serve because “the tennis” can only be generated from a 
tennis game context, which applies to the whole sentence including the preceding “ace”. In the 
second sentence, however, the ambiguity remains unresolved; the game can still refer to a tennis      
or a poker game. In the latter case, the interpretation of the word “ace” will depend on the listener’s 
preference. In the simulations in this section, we introduce a prior preference for poker as a context 
to reflect the preference of the general population (MacGregor et al., 2020). 

The word “ace” introduces ambiguity because it points to two possible states for agent (“tennis 
serve” or “card A”), each of which points to a separate state for context (“tennis game” or “poker 
game”, Table 1 in Methods).  Figures 2A and 2B show the evolution of the model’s beliefs about 
context and semantic factors for the two sentences. The ambiguity is reflected in the posterior 
estimates of agent and context between the offset of “ace” and the sentence ending word, where 
the model assigned nonzero probabilities to “card A” and “serve” as the agent, and “poker game” 
and “tennis game” as the context, and near-zero probabilities for other states (Figure 2A). 
Probabilities for poker-relevant states were higher (darker colors) due to the contextual preference. 
The verb “wins” did not change the model’s estimation for the agent or the context, but clarified the 
sentence type to be “event” and the patient to be nonempty, again with a preference towards 
poker. After the model heard “the tennis” (Figure 2A), it immediately resolved its beliefs of the 
agent, the patient and the context to the opposite of its prior preference. When the sentence ended 
with “the game”, (Figure 2B) which didn’t point to a clear resolution, the model followed its 
preference with enhanced beliefs as a result of the entropy reduction entailed by belief updating, 
but not as clearly resolved as with “the tennis” (see next section).  

The results in Figure 2 demonstrate how prior knowledge and preferences can shape and guide the 

extraction of semantic roles and contexts from the speech signal as it unfolds. Such a process is 

influenced by prior knowledge not only in the perception of semantically ambiguous words, but also 

in the details of message passing that give rise to its estimates. Specifically, the amount of 

information maintained between belief updates as quantified by entropy, and the magnitude 

information change induced by an update as quantified by the Kullback-Leibler divergence, both vary 

with the model’s prior preference for context states (Figure 3). Thus, individual preferences could 

influence the magnitude of belief updating (divergence) and information maintenance (entropy), 

quantities of interest since they are often correlated with neurophysiological signals in the 

interpretation of experimental data (see Discussion). 

Perceptual ambiguity and disambiguation rely on different computational processes 

As it is not straightforward to quantify individual subjects’ preferences in their internal knowledge of 

speech processing, one common practice in neurophysiological experiment design is to contrast 

conditions with high versus low values of perceptually and computationally relevant variables, such 
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as word entropy and surprisal, that are conventionally derived from population language tests 

(DeLong et al., 2005, Wang et al., 2018, Mamashli et al., 2019, Rodd et al., 2005, MacGregor et al., 

2020) and recently from computational models (Koskinen et al., 2020, Donhauser and Baillet, 2020, 

Caucheteux and King, 2022, Goldstein et al., 2021, Heilbron et al., 2021, Schrimpf et al., 2021). 

However, interpretations of neurophysiological correlates to these computational variables are 

often limited to phenomenology, in that a significant difference in the averaged neural response to 

the high vs. low condition is often directly attributed to the qualitative change in the corresponding 

variable without establishing what computational processes may give rise to the neural responses. 

Figure 4A and 4B were set up to match the example comparisons in the MEG study of MacGregor et 

al. (2020), where the authors identified an increase in the sensor-space response magnitude 

following the offset of a semantically ambiguous word compared to an unambiguous word (“ace” vs. 

“sprint”), as well as an increase following the offset of a word that resolved a previous semantic 

ambiguity (“the tennis” after “ace”) versus either a different word that did not resolve the ambiguity 

(“the game” after “ace”) or the same word but not resolving any ambiguity (“the tennis” after 

“sprint”). 

Figure 4A contrasts the inference process between sentence A [ACE-tennis] and sentence B [ACE-

game] in Figure 2 using their derived information metrics ([ACE-tennis] minus [ACE-game]), focusing 

on the context, the agent, and the patient factors that were most affected by the set conditions. The 

entropy in the two sentences only shows a negative difference (lower entropy for ACE-tennis) at the 

context level at the sentence offset, indicating greater residual ambiguity in the context, but not in 

the agent or the patient, after hearing “the game”. The divergence, however, shows a positive 

difference at the sentence offset, reflecting the reversal of prior preference upon hearing “the 

tennis”. Figure 4B displays the differences in entropy and divergence between sentence A [ACE-

tennis] and C [SPRINT-tennis]: “one more sprint wins the tennis” ([ACE-tennis] minus [SPRINT-

tennis]). In the model’s knowledge, the word “sprint” has an unambiguous meaning of “fast run” 

and unambiguously points to the context of a tennis game. Compared to “sprint”, “ace” introduced 

higher entropies for all three factors, reflecting the model’s uncertainty about their states. The 

uncertain beliefs after hearing “ace” were also less different from those of the previous time point 

compared to the unambiguous “sprint”, resulting in a negative difference in divergence. After 

hearing the same sentence-ending lemma “the tennis”, the model was highly certain about states in 

both sentences, and the difference in entropies became minimal. Sentence A entailed higher 

divergence because here “the tennis” was different from what the model expected from its 

preference. 

Although it seems intuitive that ambiguity would result in an increase in entropy, and 

disambiguation (towards a less preferred candidate) in an increase in divergence, one cannot 

conclude that neurophysiological signatures in response to ambiguity or disambiguation, especially 

those in sensor space, respectively reflect the computation of entropy or divergence. As can be seen 

in Figure 4, a difference in entropy between two conditions is often associated with a difference in 

divergence but in the opposite direction, with magnitudes varying across hierarchies and across 

factors within the same hierarchy. Thus, a direct link from computational processes characterized by 

entropy and divergence to aggregated sensor space response such as ERP, and further to cognitive 

phenomena of semantic ambiguity and disambiguation, cannot be established because both 

phenomena involve a complex combination of computational processes of different types and 

hierarchies. Such complexity is in line with the finding of MacGregor et al. (2020) that the two 

sensor-space phenomena were localized to different but overlapping sources. With an appropriate 

upscaling of the model to capture the internal knowledge of real-life subjects, it is plausible to 

further dissociate different computation processes by correlating model-derived information 
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metrics, importantly at different hierarchical levels and factors, with source-, time- and frequency-

specific responses (see Discussion). 

Top-down prediction reduces processing effort 

The model works by iteratively calculating the discrepancy between top-down predictions 

(expectation of the input) and bottom-up input at each hierarchy and using such discrepancy to 

modify the state estimates of superordinate hierarchies. This does not imply that the model needs to 

make the best prediction for the next input: hierarchical predictions are a necessary computational 

mechanism in the relaying of information, which contributes to making correct inferences even if the 

actual input does not correspond to the predicted one. To examine how the content of prediction 

may influence the inference process, we compared the model responses to “one more ace wins the 

tennis” with informative (best estimation of the next input) versus uninformative (uniform 

distribution across all possibilities) top-down predictions. We found that the prediction scheme can 

influence both the time course and the final estimate of the model.   

Figure 5A and 5B respectively show top-down priors and posterior estimates for lemma and syllable 

levels with the same parameters as Figure 2A, i.e. with informative top-down prediction. The 

predictions reflect both prior knowledge and the updated estimation of superordinate levels, and 

posterior estimations immediately converged to the correct states after receiving the determining 

input that unambiguously points to a specific state, for example the second syllable in the last 

lemma. When top-down predictions were made uninformative (Figure 5C), the model still made 

correct inferences about every input, but with a slight delay for syllables (note the short vertical bars 

at the beginning of some syllables in the bottom panel of Figure 5C, indicating slower convergence 

to the estimate compared with Figure 5B). Figure 5D and 5E quantify the difference between the 

two conditions by contrasting the entropy and cumulative divergence during the inference process. 

Unsurprisingly, informative predictions lead to reduced processing effort as quantified in terms of 

entropy (maintenance of possible items) and divergence (magnitude of updates after the integration 

of new evidence). Despite the differences at lower levels, the model response at the semantic and 

context levels are nearly identical in these two conditions because the model reached the same, 

almost-certain lemma estimates at the time of semantic updating (at each lemma offset), and the 

updating was instantaneous in both cases due to the small number of total possibilities (not shown). 

So far, we have simulated the model with the ideal scenario of arbitrarily high precisions (see 

Methods) at the bottom continuous level. The precision parameter is a weight applied to the 

discrepancy between predicted and received input that contributes to the update of the posterior 

estimate (Friston et al., 2008). In general, a high precision implies that fine details from the input are 

utilized to evaluate the mapping between the input signal and the generative model, analogous to a 

perfect periphery that preserves the best possible spectro-temporal information from the acoustic 

input. It has been suggested that top-down predictions may be especially important under 

challenging situations, e.g. impaired auditory periphery or deteriorated speech signal (Sohoglu et al., 

2012, Peelle, 2018). Figure 6 shows the comparison of informative vs. uninformative predictions 

similar to Figure 5, in a model with lower peripheral precisions. In particular, we lowered both the 

precision for the continuous states as well as for comparing the input with predicted activity in the 

six frequency channels (see Methods), analogous to lesioning the local computations supported by 

lateral connections and the cross-level information carried by bottom-up connections, respectively 

(Friston et al., 2008, Yildiz et al., 2013). Syllable identification was delayed in both cases when 

compared to their intact-periphery counterparts (Figure 6A vs. 5B, 6B vs. 5C), and the delay was 

more pronounced with uninformative predictions. This dramatic delay is accompanied by higher 

entropy (red curve in Figure 6C), which showed both a higher maximum and a longer decay for every 
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syllable. Having to make more effort in recognizing each syllable, however, may not be completely 

undesirable: in Figure 6A, the model relied on its prior knowledge, saving processing effort but 

ended up recognizing the last lemma incorrectly as “the poker”. The tradeoff between processing 

effort and accuracy has been well-documented in the decision-making literature (Payne et al., 1988) 

and later recognized by neuroscientists as neuroeconomics (see review by Eckert et al. (2016) on 

listening), which reveals that humans flexibly adapt their strategy in challenging scenarios where 

high accuracy and low effort cannot be achieved together. Our results suggest that such tradeoff can 

be achieved via adjusting the content of top-down predictions and one’s reliance on them, an ability 

likely lacking in certain neuropsychological disorders (Parr et al., 2018). The comparison between 

Figure 5 and 6 also indicates that listeners with unimpaired periphery may choose their prediction 

strategies to optimize one aspect without compromising the other as much as the impaired.   

Overall, the model demonstrates that hierarchical prediction, whether highly informative about the 
next input or not, can serve as a key computational mechanism for robustly extracting structured 
information from ongoing speech, and that informative predictions are desirable when processing 
effort needs to be minimized. With an impaired periphery, greater effort is required to obtain an 
accurate perception.   
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Discussion 

The idea that our brains adaptively entertain internal models to facilitate language comprehension 
underlies most current research in speech (language) perception. Nevertheless, how internal 
knowledge is deployed in time is an open question, and may be key in resolving the form-meaning 
discrepancy in neural-network language models (Bender and Koller, 2020). Here, we attempt to 
establish a foundational framework that dynamically exploits general knowledge in speech 
comprehension to bridge this gap. We implement the listener’s internal knowledge as a probabilistic 
generative model that consists of a non-linguistic general knowledge (cognitive) model and multiple 
temporally organized hierarchies encoding linguistic and acoustic knowledge. Speech perception, 
modeled as the inversion of this generative model, involves interleaved top-down and bottom-up 
message passing in solving the computational challenge of extracting meaning from ongoing, 
continuous speech. We show that the model makes plausible inference of hierarchical information 
from semantically ambiguous speech stimuli and demonstrate the influence of prior knowledge on 
the inference process. We also show that hierarchical predictions can be exploited to reduce 
processing effort. The model tries to mimic human language comprehension by implementing 
incrementality and prediction (Altmann and Mirkovic, 2009). It can be potentially expanded towards 
a comprehensive model of natural language understanding, and guide the interpretation of 
neurophysiological phenomena in realistic listening scenarios. 

Language comprehension as semantic role assignment 

Although we emphasize that speech (language) comprehension is driven by high-level behavioral 
goals, to achieve comprehension the appropriate assignment of semantic roles conveyed in the 
utterance is a necessary step. Semantic roles can be viewed as an interface between linguistic and 
nonlinguistic representations, the latter being a more abstract and fundamental format of our 
internal rendering of the world that can be expressed in multiple modalities not restricted to verbal 
language. The process of semantic role assignment is fundamental in psycholinguistic process 
theories (Tanenhaus et al., 1989, McRae et al., 1997, Altmann, 1999), yet seldom reflected explicitly 
in existing computational models of language (cf. (Altmann and Mirkovic, 2009)). A major challenge 
for modeling semantic role assignment during language processing is in combining meaning 
extraction with compositionality: words that carry semantic contents are presented in an order 
dictated by compositional rules, thus the extraction of persisting meanings must take place 
dynamically alongside the decomposition. These two aspects have only been addressed separately in 
some existing models, e.g. topic models (Blei et al., 2003, Griffiths et al., 2007) fulfill (lexical) 
semantic processing as they extract the “gist” in a collection of words but ignores the word order, 
whereas the Discovery of Relation by Analogy model (Martin and Doumas, 2017, Martin, 2020) 
learns the time-based binding rules that decompose words and phrases into hierarchical structures 
but does not have any explicit representation of semantic knowledge.  

A recent model of linguistic communication (Friston et al., 2020) did incorporate abstract non-
linguistic (geometric) knowledge and compositionality, but lacked the incremental nature of the 
meaning-building process in humans (Tanenhaus et al., 1995). The generative model had access to a 
set of possible formats of complete sentences and a set of properties that described simple 
geometric objects. By applying nonlinguistic knowledge under the goal of resolving the object 
properties, the model generated sentences by picking the most probable sentence format and filling 
specific positions with the most helpful descriptive words. The inverse model thus comprehends a 
word sequence by inferring the sentence format and capturing keywords at the corresponding 
positions. This template-matching strategy realized a form of meaning-structure conjunction. 
However, it constrains the model comprehender to update its estimate of the sentence at the 
sentence offset instead of on the fly during the sentence. 
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Our model achieves human-like speech (language) comprehension in that it applies syntactic rules to 
dynamically update values assigned to semantic roles with each incoming lemma. It does not have a 
direct representation of sentences, but incrementally builds up its understanding of an utterance 
through incorporating new evidence (here the speech signal) into current beliefs of semantic roles. 
This feature is enabled by the construction of a hierarchical generative model that explicitly 
represents meaning and links semantic roles with syntactic elements. Although the model manages 
very limited linguistic and world knowledge, i.e. a small number of possible states for each factor, it 
can in principle process any plausible sentences within this miniature world given that the 
corresponding probabilistic mapping matrices are set to reflect all possibilities. These probabilistic 
mappings in turn influence the model’s perception through the information exchanged between 
processing hierarchies as is shown in Figure 2-4, which we believe plays an important role for linking 
the model’s computational principles to neurophysiological data of speech information processing in 
the human brain.  

Understanding neural information transfer through divergence and entropy 

Brains process internal and external information with unparalleled efficiency. Two types of 
information theoretic metrics have been of particular interest in establishing the connection 
between abstract information and biophysical signals to probe the brain’s information processing 
capacity: surprisal (related to, but distinct from divergence) and entropy. 

The correlation between language processing (mainly reading) load with how surprising an incoming 
word is given its sentential context has been well-documented using behavioral metrics (Hale, 2001, 
Demberg and Keller, 2008). Efforts in associating neurophysiological responses to surprisal for next-
word expectation, either based on cloze probability tests (DeLong et al., 2005, Wang et al., 2018, 
Mamashli et al., 2019, MacGregor et al., 2020) or the probabilistic distribution of predicted next-
word input estimated by computational models (Koskinen et al., 2020, Donhauser and Baillet, 2020, 
Goldstein et al., 2021, Heilbron et al., 2021, Schrimpf et al., 2021, Caucheteux and King, 2022), 
largely credit Levy’s influential work on expectation-based comprehension. Levy proposed a formal 
relationship between incremental comprehension effort and the Kullback-Leibler divergence (KLD) 
of syntactic structure inference before and after receiving a word input W, and proved that the KLD 
reduced to surprisal of W given the previous word string if the extra-sentential context remains 
unchanged. Although these studies robustly found neurophysiological correlates of word surprisal, 
focusing on this aggregated measure without explicitly modeling probabilistic representations above 
the word level may not be enough to tease out the influence of high-level factors on language 
processing (Figure 3) (cf. (Caucheteux and King, 2022)). High-level processes presumably explain 
conflicting findings across studies on evoked response (Kuperberg, 2007) and underlying neuronal 
circuits (MacGregor et al., 2020, Mamashli et al., 2019, Donhauser and Baillet, 2020) of word 
surprisal, because different experimental paradigms likely tap into different language processing 
modes, making word surprisal too coarse a measure. Here, we demonstrate the possibility to 
explicitly model information transduction above lexical processing and use KLD as a universal metric 
to quantify information transfer, in line with some predictive coding hypothesis that proposed KLD 
to be driving the prediction error signal transmitted between cortical hierarchies (Friston and Kiebel, 
2009, Bastos et al., 2012). To adapt the model to different tasks, the factorization of the top level in 
our model, and its relationship with the semantic and context level, can be designed to reflect 
corresponding perceptual processes. 

As for entropy, the measure of information in a system (Shannon, 1948) that represents the 
uncertainty or ambiguity in linguistic stimuli, has attracted less focus compared to surprisal metrics 
(Willems et al., 2016, Donhauser and Baillet, 2020, MacGregor et al., 2020, Gwilliams et al., 2020). 
This is partly because these two metrics are often correlated (e.g. Figure 4), and surprise as a marker 
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of instantaneous change can be more straightforwardly interpreted from neurophysiological 
paradigms that essentially work by detecting between-condition changes. However, there is little 
consensus on how information is maintained between two instantaneous belief updates, and 
entropy may be valuable in investigating such information representation in the brain. Intuitively, 
higher entropy implies greater effort to maintain more possibilities, and less precise estimates thus 
weaker influence in top-down predictions, but it is unclear what neural activities can reflect such 
effects. Noninvasive whole-brain imaging may inform us when and where the effort takes place 
given that entropy and divergence are properly dissociated using computational models (Donhauser 
and Baillet, 2020), but the biophysical implementation, e.g. firing patterns of neuronal ensembles, 
may only be revealed by invasive methods. 

Let’s point out that both KLD and entropy are measures of probability distributions within 
representational levels, which cannot directly stand for the information transmitted between levels. 
For inter-level information, it is possible to decompose the KLD into bottom-up prediction errors and 
top-down priors (Friston et al., 2017), and apply known neurophysiological probes, e.g. neural 
oscillations, to distinguish these two flows in the brain (Bastos et al., 2012, Giraud and Arnal, 2018, 
Giraud and Poeppel, 2012, Arnal and Giraud, 2012, Bastos et al., 2020, Hovsepyan et al., 2022) . 

Insights for biophysical implementation by integrating neural oscillations 

Although no definitive conclusion has been drawn on the anatomical circuits involved in message 
passing during speech perception, a converging view is that the extraction of different 
representational hierarchies is likely distributed in networks that perform multiple subprocesses in 
parallel (Egorova et al., 2013, Fedorenko et al., 2016, Pulvermuller, 2018, Fairs et al., 2021). Recent 
temporally and spatially resolved neuroimaging studies suggest that neural oscillations may be a 
candidate information transmission mechanism in these subprocesses. The discrete portion of our 
model, or in theory any model with explicit structural and timing information (Martin and Doumas, 
2017, Martin, 2020), can provide a template for organizing distributed oscillatory activities into 
functional hierarchies through correlating latency- and frequency-specific neuronal dynamics with 
model-derived information metrics. 

Specifically, oscillatory activities in the low-gamma (25-40 Hz) band package samples from fast 
variations in the acoustic input, which is then parsed into syllabic and phrasal (prosodic) information 
likely encoded as phase alignments of slower oscillations in theta (4-8 Hz) and delta (2-4 Hz) bands 
(Giraud and Poeppel, 2012, Arnal and Giraud, 2012, Ding et al., 2016, Lakatos et al., 2019, 
Hovsepyan et al., 2020, Rimmele et al., 2021). Whereas these bands appear to be entrained to 
bottom-up stimulus characteristics, they are also causally influenced by top-down modulations (Park 
et al., 2015) that may be coordinated by endogenous alpha (8-12 Hz) and beta (14-20 Hz) oscillations 
(Arnal and Giraud, 2012, Fontolan et al., 2014, Pefkou et al., 2017, Bastos et al., 2020) (also see 
(Murphy, 2018, Meyer et al., 2020) for integrative hypotheses). Moreover, the amplitude of slow 
oscillations as well as their interactions are shown to be modulated by surprisal and entropy in the 
speech signal at their corresponding linguistic timescales (Mamashli et al., 2019, Donhauser and 
Baillet, 2020, MacGregor et al., 2020). Thus, it is reasonable to associate time-locked evoked 
responses with model-identified informational changes in the brain’s distributed representations, 
and further distinguish directional communication between neuronal sources of such evoked 
response by frequency channels. Whether this approach can be applied to low-level sensory 
processing requires further understanding in the neuronal interface between continuous and 
discrete (symbolic) operations, which are likely implemented in different fashion both anatomically 
and computationally (Felleman and Van Essen, 1991, Barrett and Simmons, 2015, Friston et al., 
2017). 
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Limitations of the model and further development towards natural language understanding 

In this work, we provide a basic model that integrates linguistic and world knowledge in speech 
perception, with a focus on resolving ambiguity in semantic role assignment within a reduced 
language and world model. For the application in modeling realistic speech comprehension and its 
neurophysiological correlates, two obvious limitations need to be overcome. 

First is the model scale. Although we constructed the model’s internal knowledge to support 
multiple possibilities in context/semantic assignment and (linear) syntactic composition during 
comprehension, this is far from the wealth of vocabulary and linguistic and nonlinguistic knowledge 
mastered by a real listener. A model with an adequately large parameter size may not qualitatively 
differ from a reduced model, but is necessary for quantitative analysis in relation to biological 
responses. A plausible algorithm of statistical parameter learning of structured contextual and 
semantic knowledge is the one proposed for the “topic” model of semantic representation (Blei et 
al., 2003, Griffiths et al., 2007), which finds topics and estimating prior distributions for the 
generative model of gist→topic→word from text corpora. Griffith et al. (Griffiths et al., 2007) also 
pointed to a possible way to integrate complex syntax and semantic generative models by replacing 
one component in a syntax model (Griffiths et al., 2004) with such a topic model. This would allow 
the syntax model to determine an appropriate semantic component for the current timepoint and 
the semantic model to generate a corresponding word, which is consistent with the way semantic 
and syntax factors interact in our current model. More recently, Beck and colleagues (Beck et al., 
2012) showed that a formal equivalence of the topic model can be implemented via a probabilistic 
(neural) population code, providing another plausible path to upscaling the model. 

Another limitation is that the model has a fixed length for each hierarchy. This issue has been partly 
addressed in Hovsepyan et al. (Hovsepyan et al., 2020), where a theta oscillator can adapt to the 
speech envelope, enabling the processing of syllables of different durations. To enable variable 
numbers of syllables per lemma, it may be necessary to separately model the previous and the 
current lemma, and let the first syllable of the new lemma signal the offset of the previous lemma as 
well as the onset of the new one. This is incompatible with the model implementation we adapted 
here (Friston et al., 2017), but realizable if formal relationships among factors are properly defined, 
such as in a recent Bayesian model that exploited lexical knowledge in syllable segmentation (Nabe 
et al., 2021). The problem of a fixed number of lemmas per sentence is automatically resolved with a 
complete syntax model. However, establishing formal relationships in linguistic processing or 
modeling nonlinear syntax within a Bayesian framework are both extremely challenging tasks.  

Overall, this model adopts a different and complementary perspective from the rapidly developing 
world of large-scale natural language models (Devlin et al., 2018, Radford et al., 2019, Brown et al., 
2020) in that it puts upfront the gross biological factors that motivate language in the first place 
(Hauser et al., 2002, Corballis, 2009, Greenfield, 1991, Fitch, 2012), rather than those that allows for 
matching human performance via selected measurements. This approach acknowledges that human 
language has emerged and evolved under evolutionary pressure that is both enabled and 
constrained by our specific biological substrates. We implemented these principles by explicitly 
including nonlinguistic components in the model architecture and using hierarchical (as opposed to 
aggregated) prediction as a general computational strategy. Although here we focus on a passive 
listener, a comprehensive model of human language understanding should also consider the action 
of language, i.e. language production and multi-person communication (Friston et al., 2020) where 
language serves as a medium to achieve shared goals (Galantucci et al., 2006, Hickok and Poeppel, 
2007, Pulvermuller and Fadiga, 2010, Bender and Koller, 2020, Castellucci et al., 2022).  

Summary 
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We present a computation framework for speech comprehension via extracting semantic roles from 
ongoing natural speech. By incorporating internal knowledge via hierarchical message passing, the 
model makes human-like incremental inference of semantic and contextual information conveyed in 
continuous speech signals. It demonstrates the perceptual effect of different degrees of top-down 
predictions and has advantages in accounting for neuronal activities underlying information 
processing beyond the word level. We provide strategies to apply the model in linking neural 
message passing with oscillatory mechanisms and point to possible directions for further 
development.  
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Figure 1. A generative model of speech and its inversion. 1A. Schematic of the generative model. Left: information 
conveyed in a speech signal is roughly separated into six hierarchies. To generate speech, the model first assigns values 
to semantic roles according to the contextual knowledge and determines a (linear) syntactic structure from the type of 
the message it’s expressing. Together, semantics and syntax generate an ordered sequence of lemma units. Each lemma 
unit generates a sequence of syllables, which in turn generates a sequence of spectral vectors. Each spectral vector unit 
is then deployed as a continuous acoustic signal of 25 ms. Inference corresponds to the inversion of the generative 
process. The model is divided into three parts that were implemented with different algorithms (see Methods). Right: 
cartoon (www.freepik.com) illustrating how a sequence of syllables ‘lo-ri’ (lorry) is generated from a traffic scene 
context. In describing a traffic accident, the speaker tries to convey its mental image of the scene consisting of an agent 
(the car), a patient (the lorry) and the relation (the action of hitting) from the agent to the patient. With English 
vocabulary and grammar, it chooses one lemma corresponding to each element in the accident, and outputs (speaks) 
these lemmas in a specific order according to the syntactic rules. Each lemma is then expressed as a specific sequence of 
syllables. Importantly, the same lemma can be the result of different combinations of abstract information and syntactic 
rules. For example, in the sentence “The ball hits the floor”, the word “hits” implies a different action than car hitting a 
cyclist, whereas in “His songs are top hits” the relative position of the word implies an entity, not an action. B. Temporal 
scheduling of hierarchical message passing during speech perception. The generative model is inverted by alternating 
top-down prediction (prior, green downward arrows) and bottom-up update (blue upward arrows). A supraordinate 
level initiates a sequence of evidence accumulation in its subordinate level and receives a state update at the end of 
such sequence. It then sends an updated prediction to the subordinate level and initiates another sequence of evidence 
accumulation. Such process is repeatedly performed until the end of the sentence. Note that for the lemma and lower 
levels, states are generated anew each time when the supraordinate level makes a transition, i.e. no horizontal arrows 
between sending up an update and receiving a new prior. For the top two levels, however, states are maintained 
throughout the sequence (red horizontal arrows) or make transitions according to a set of rules (syntax). 
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Figure 2. Model estimation of posterior probabilities for the semantic and context-level factors as sentences unfold. 
Possible values of each factor are labelled on the y axis. Blue scale blocks indicate the probability distribution for each 
factor, dark blue—p=1, white—p=0. Vertical lines and red arrows mark the offsets of lemma input, at which point 
updates were sent from the lemma level to semantic and context. The updating process is nearly instantaneous, and the 
main body of the nth block (epoch corresponding to one lemma) is filled with the estimation after of the (n-1)th update. 
For both simulations, relative prior for context was set at the default of 1.5:1:1:1 for the four possibilities {‘poker game’, 
‘tennis game’, ‘night party’, ‘racing game’}. A. Estimation for sentence A: “one more ace wins the tennis”. The first 
input “one more” was not informative. The estimated distributions were slightly changed before and after the offset of 
“one more” because the model still performed gradient descent to minimize free energy. After hearing “ace”, 
distributions for the context and the agent converged to either “poker game” or “tennis game” for context, and ‘card A’ 
or ‘serve’ for agent. Within these possibilities, probabilities for the poker context and the ‘card A’ agent were higher, 
reflecting the prior preference. Probabilities of “tennis” or “poker” as patient also increased. Type, relation, and modifier 
remain the same as in the previous epoch. After hearing ‘wins’, possibilities for type converged to ‘event’, and those for 
relation converged to ‘win’. Probabilities for ‘tennis’ and ‘poker’ for patient further increased, with a strong bias for 
“poker”, while the probability of a ‘null’ patient decreased to zero. In the last epoch, the model received a 
disambiguating phrase ‘the tennis’, and all factors are resolved to the correct state with a probability close to 1. B. 
Estimation for the sentence “one more ace wins the game”. The distributions are the same as in A before the last 
update. In the last epoch, the model receives an input, ‘the game’, that does not resolve the semantic and contextual 
ambiguity. As a result, distributions were further biased towards values corresponding to the ‘poker game’ context. 
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Figure 3. Effect of contextual bias ratio on the inference process. A-C: metrics derived from the sentence “One more 
ace wins the tennis” as function of contextual bias between “poker game” and “tennis game”. A bias of x implies that 
the prior probability ratio (the total probability is always normalized to 1) for context was set to [x 1 1 1] for all 4 
possible contexts [‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’} for x>=1, and [1 1/x 1 1] for x<1 to balance 
the influence of the two irrelevant contexts. D-F: same metrics derived from sentence “One more ace wins the game”. 
A. Inferred states for the context (blue) and the agent (red) do not change with contextual bias, i.e. the model always 
resolved to the correct states. B. Sum of entropy across context, agent and patient at the subject word (“ace”) offset 
and the sentence offset. At the offset of “ace” (blue), the entropy is maximum at bias=1 and symmetric on both sides. 
At sentence offset (red), the entropy is overall lower than at the offset of “ace” and monotonically increases with a 
small slope, reflecting that the model was more certain about the state estimations at this point, but keeps a small 
possibility towards the poker game that increases with the bias towards the poker context. C. At the sentence offset, 
the divergence monotonically increases with bias towards poker reflecting the increasing difference between the 
expected context (poker) and the actual one (tennis).  D. Inferred states for context and agent at the end of sentence B 
as a function of bias. For bias<1 (preference for ‘tennis’context), the inferred context is “tennis (game)” and inferred 
agent is “serve”. For bias>=1, the result corresponds to a preference for the “poker” context. E. Sum of entropy. For 
both time points, the entropy is at maximum when bias=1. Both curves are symmetrical by bias=1. The blue curve is the 
same as in B because the sentence input up to this point was the same. F. Sum of divergence across the same three 
factors at two critical time points. At the offset of “ace”, the divergence reached its minimum at bias=1 as a result of the 
uniform distribution over “poker” and “tennis” states, which is the least different from the previous time point. At the 
sentence offset, the stronger the bias (farther from 1), the smaller the difference between before and after hearing the 
final word. However, a notch is seen at bias=1 due to the uncertainty (Figure S1E). 
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Figure 4. Differences of entropy and KL divergence for context, agent and patient between sentences. A. Entropy and 
divergence derived from sentence “one more ace wins the tennis” minus sentence “one more ace wins the game”. 
The two vertical dashed lines mark the offset of the sentence middle word “ace” and the ending word, respectively. As 
the two sentences only differ in the ending word, both IT metrics differ only at the sentence offset. Compared to “the 
game”, which does not completely resolve the ambiguity introduced by ‘ace’”, ‘the tennis’ results in lower entropy in 
“context” (top left panel), indicating greater certainty about the estimate. The zero differences in entropy for agent and 
patient indicate that the model tends to believe in its bias for these two factors. “The tennis” also gives rise to higher 
divergence (right panels) at sentence offset. B. Results from sentence “one more ace wins the tennis” minus “one 
more sprint wins the tennis”. At its offset, the ambiguous word “ace” introduces higher entropy for all three factors 
compared to “sprint”, reflecting the greater uncertainty about the hidden states. Such uncertainty dominates the 
divergence, which shows a corresponding negative difference here. At the sentence offset, differences of entropy 
between the two sentences became minimal because the model has resolved all factors. The positive difference in 
divergence at the offset reflects the higher surprisal for “the tennis” when it follows “ace” compared to “sprint”. 
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Figure 5. Influence of top-down predictions on syllable and lemma inference under high peripheral precision. All results 
are simulated with the sentence “One more ace wins the tennis”. A. Predictions (prior expectations sent from the 
superordinate level) for the simulation in Figure 2A. Yellow vertical lines indicate offsets of each lemma input. In lemma 
1-3, syllable predictions (lower panel) are nearly certain after the first syllable because there was a one-to-one 
correspondence between the lemma and the first syllable. In lemma 4 (“the tennis”), the opposite is true because all 
possible lemmas start with the syllable “the”, diverging at the second syllable. Lemma predictions (top panel) depend on 
the current estimates at the superordinate level and the contextual bias, e.g. the prediction for the last lemma is highest 
for “the poker”, and lowest for “the tennis”. B. Estimation of posterior probabilities for lemma and syllable states for the 
simulation in Figure 2A. The model instantly recognizes each syllable (lower panel). The estimation for lemma states 
(upper panel) appears to lag for the duration of one syllable, because the lemma level receives a nearly instantaneous 
update at the offset of every syllable, and the grid between the ith and (i+1)th updates is filled with the estimated 
distribution of the ith update. For example, the estimation for the first lemma started with a 1:1 prior expectation between 
“one more” and “that”, then converged to “one more” after hearing the first syllable “one”. The estimation was not 
changed until the offset of “ace”, the first syllable of the second lemma. This is only due to our illustrating method and 
does not affect the update from lemma to semantics. C. Estimation of posterior probabilities when top-down predictions 
are set to uniform distributions for all possible states. There are two noticeable differences at the syllable level (bottom 
panel) compared to B: 1) the initial estimate is a uniform prior for every syllable indicated by a very light grey vertical line 
through all possible states 2) a slight delay for the convergence of every syllable indicated by the small vertical bars, each 
corresponding to one spectral vector, in more than one possible state. The inference for lemma states is not significantly 
changed: once the model is certain about the first (or the second in the case of the last lemma) syllable, it can quickly 
converge to the correct lemma using its internal knowledge. D. Contrast of entropy in the two prediction conditions 
calculated from lemma and syllable states. With uninformative top-down prediction (red), the entropy of syllable states 
was raised for a short duration (~1-2 spectral vectors) more often than with informative prediction (blue). The difference 
is less obvious at the lemma level except during the very first syllable and the /the/ syllable in the last lemma. E. 
Cumulative KL divergence in the two conditions. Overall, the cumulative divergence is smaller when informative 
prediction is utilized (blue). 
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Figure 6. Influence of prediction with lowered peripheral precision. The input sentence, as in Figure 4 was “One more ace 
wins the tennis”. Precision was set to p=exp(0), whereas in the intact model (Figure 4) p=exp(16). A and B: state 
estimation with and without informative prior. C and D: entropy and divergence in the two conditions. A. With 
informative prediction, the result is similar to that in Fig. 2A, except that 1) for the last lemma input, the model relied on 
the prediction, biased towards “the poker”, and made the wrong inference, and 2) for the starting syllable in each lemma, 
the model took several spectral vectors to converge as indicated by the colored bars. B. Without prediction, the model 
took longer to infer each syllable compared to A, but inference was correct. C. Entropy with informative (blue) or 
uninformative (red) top-down prediction for lemma and syllable estimates. Without informative prediction, the 
uncertainty raised at the onset of every syllable instead of only for the syllable with multiple possible candidates (e.g. the 
syllable after “the” in the last lemma), and also reached higher magnitude as well as longer duration compared to the 
informative condition. D. Cumulative divergence in the two conditions. The divergence for syllable states was lower with 
informative prediction, but not for lemma. However, the summed divergence of the two levels is slightly higher with 
uninformative prediction. 
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Methods 
 
We model speech perception by inverting a generative model of speech that is able to generate 
semantically meaningful sentences to express possible facts about the world. Since our main goal is 
to illustrate the cognitive aspect of speech comprehension, we use the model to simulate a semantic 
disambiguation task similar to MacGregor et al. (MacGregor et al., 2020). The task assesses the 
semantic ambiguity early in a sentence, which is disambiguated later in the sentence on half of the 
trials. Speech inputs to the model were synthesized short sentences adapted from MacGregor et al. 
(MacGregor et al., 2020).   

In the next section we describe the speech stimuli, present the generative model, and briefly 
describe the approximate inversion of the generative model as well as the two information theoretic 
measures that could be related to measurable brain activity. 

1. Speech stimuli 

In the original design of MacGregor and colleagues, eighty sentence sets were constructed to 

test the subjects’ neural response to semantic ambiguity and disambiguation. Each set consists 

of four sentences in which two sentence MIDDLE WORDS crossed with two sentence final words. 

From the two sentence middle words, one was semantically ambiguous and from the two 

sentence final words one disambiguated the ambiguous middle word, and the other did not 

resolve the ambiguity. For example: 

The man knew that one more ACE might be enough to win the tennis. 

The woman hoped that one more SPRINT might be enough to win the game. 

The middle word was either semantically ambiguous (“ace” can be a special serve in a tennis 

game, or a poker card) or not (“sprint” only has one meaning of fast running); the two ending 

words either resolved the ambiguity of the middle word (“tennis” resolves “ace” to mean the 

special serve, not the poker card) or not (“game” can refer to either poker or tennis game). We 

chose this set as part of input stimuli to the model, but reduced the sentences to essential 

components for simplicity:  

One more ACE/SPRINT wins the tennis/game. 

The four sentences point to a minimum of two possible contexts, i.e. the nonlinguistic 

backgrounds where they might be generated: all combinations can result from a “tennis game” 

context, and the ACE-game combination can additionally result from a “poker game” context. 

Importantly, in our model the context is directly related to the interpretation of the word “ace”.  

To balance the number of plausible sentences for each context, we added another possible mid-

sentence word “joker”, which unambiguously refers to a poker card in the model’s knowledge. 

We also introduced another possible sentence structure to add syntactic variability within the 

same contexts: 

One more ACE/SPRINT is surprising/enough. 

The two syntactic structures correspond to two different types of a sentence: the “win” 

sentences describe an event, whereas the “is” sentences describe a property of the subject. 

We chose a total of two sentence sets from the original design. The other set (shortened 

version) is:  

That TIE/NOISE ruined the game/evening. 
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In these sentences, the subject “tie” can either mean a piece of cloth to wear around the neck 

(“neckband” in the model) or equal scores in a game. The ending word “game” resolves it to the 

latter meaning, whereas “evening” does not disambiguate between the two meanings. Similar to 

set 1, we added the possibility of property-type sentences. Table 1 lists all possible sentences 

and their corresponding contexts within the model’s knowledge (ambiguous and resolving words 

are highlighted). 

Table 1. All possible sentences in the model 

Attribute Subject Verb Object/Adjective Context 

One more/that 

ace 
wins 

the game/the poker poker game 

the game/the tennis tennis game 

is surprising/enough poker or tennis game 

sprint 
wins the game/the tennis tennis game 

is surprising/enough tennis game 

joker 
wins the game/the poker poker game 

is surprising/enough poker game 

tie 

ruined 
the evening night party/racing game 

the game racing game 

is 
ugly night party 

unfair racing game 

noise 
ruined the evening/the game night party/racing game 

is loud/sharp night party/racing game 

 

The input to the model consisted of acoustic spectrograms that were created using the Praat 
speech synthesizer (Boersma, 2021) with British accent, male speaker 1.  

In this work we are not focusing on timing or parsing aspects, rather on how information is 
incorporated into the inference process in an incremental manner and how the model’s 
estimates about a preceding word can be revised upon new evidence during speech processing. 
Therefore, we chose the syllable as the interface unit between continuous and symbolic 
representations, and fixed the length of the input to simplify the model construction (see details 
in Generative model). Each sentence consists of four lemma items (single words or two-word 
phrases), and each lemma consists of three syllables. All syllables were normalized in length by 
reducing the acoustic signal to 200 samples.  

Specifically, in Praat, we first synthesized full words, then separated out syllables using the 
TextGrid function. A 6-by-200 time-frequency (TF) matrix was created for each unique syllable by 
averaging its spectro-temporal pattern into 6 log-spaced frequency channels (roughly spanning 
from 150 Hz to 5 kHz) and 200 time bins in the same fashion as in Hovsepyan et al. (Hovsepyan 
et al., 2020). Each sentence input to the model was then assembled by concatenating these TF 
matrices in the appropriate order.  Since we fixed the number of syllables in each word (Ns = 3), 
words consisting of fewer syllables were padded with “silence” syllables, i.e. all-zero matrices. 
During simulation, input was provided online in that 6-by-1 vectors from the padded TF matrix 
representing the full sentence were presented to the model one after another, at the rate of 
1000 Hz. In effect, all syllables were normalized to the same duration of 200ms. The same TF 
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matrices were used for the construction of the generative model as speech templates (see 
section 2c for details). 

2. Generative model 

The generative model goes from a nonlinguistic, abstract representation of a message defined in 

terms of semantic roles to a linearized linguistic sentence and its corresponding sound 

spectrogram. The main idea of the model is that listeners have knowledge about the world that 

explains how an utterance may be generated to express a message from a speaker.  

In this miniature world, the modeled listener knows about a number of contexts, the scenarios 

under which a message is generated (to distinguish them from names given to representation 

levels in the model, we will use italic to refer to factors at each level; see below). Each message 

can either be of an “event” type that describes an action within the context, or of a “property” 

type that expresses a characteristic of an entity that exists in the context. Context and type are 

nonlinguistic representations maintained throughout the message but make contact with 

linguistic entities via semantics and syntax, which jointly determine an ordered sequence of 

lemma that then generates the acoustic signal of an utterance that evolves over time.  

As in the real world, connections from context to semantics and semantics to lemma are not 

one-to-one, and ambiguity arises, for example, when two semantic items can be expressed as 

the same lemma. In this case the model can output exactly the same utterance for two different 

messages. When the model encounters such an ambiguous sentence during inference, it will 

make its best guess based on its knowledge when ambiguity is present (see Model inversion). 

For illustrative purposes, we only consider a minimum number of alternatives, sufficient to 

create ambiguity, e.g. the word “ace” only has two possible meanings in the model. Also, while 

the model generates a finite set of possible sentences, they are obtained in a compositional 

fashion; they are not spelled out explicitly anywhere in the model, and must be incrementally 

constructed according to the listener’s knowledge.   

Specifically, the generative model (Figure 1A) is organized in three hierarchically related 

submodels that differ in their temporal organization, with each submodel providing empirical 

priors to the subordinate submodel, which then evolves in time according to its discrete or 

continuous dynamics for a fixed duration (as detailed below). Overall, this organization results in 

six hierarchically related levels of information carried by a speech utterance, from high to low 

(L1-L6) we refer to them as: context, semantics and syntax, lemma, syllable, acoustic, and the 

continuous signal represented by time-frequency (TF) patterns that stands for the speech output 

signal.  

Each level in the model consists of one or more factors representing the quantities of interest 

(e.g., context, lemma, syllable …), illustrated as rectangles in Fig 1A. We use the term “states” or 

hidden states to refer to the values that a factor can take (e.g. in the model the factor context 

can be in one of four states [‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’}. For a 

complete list of factors and their possible states of context to lemma levels see Table 2).  

Table 2. Factors and their possible values (states) in the model hierarchy 

Level Factor Value  

1 Context Tennis game, poker game, night out, car racing game 

1 Sentence type Event, property 

2 Agent (semantic) Card A, winning serve, run, card J, neckband, score, buzz, null 

2 Patient (semantic) Tennis game, poker game, racing game, evening, null 

2 Relation (semantic) Win, ruin, be 
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2 Modifier (semantic) Sufficient, unexpected, not pretty, not fair, high volumn, high frequency 

2 Syntax Attribute, subject, verb, object, adjective 

3 Lemma One more, that, ace, sprint, joker, tie, noise, wins, ruined, is, the tennis, the 
poker, the game, the evening, enough, surprising, ugly, unfair, loud, sharp 

3 Where in lemma 1-3 

4 Syllable* /eis/, /te/, /nis/, … total of 32 including the silence syllable 

4 Where in syllable 1-8 

*Note that these symbols are illustrative and not strictly following IPA. 

As an example, to generate a sentence to describe an event under a “tennis game” context, the 

model picks “tennis serve” as the agent, “tennis game” as the patient, and “win” as their 

relationship. When the syntactic rule indicates that the current semantic role to be expressed 

should be the agent, the model selects the lemma “ace”, which is then sequentially decomposed 

into three syllables /eis/, /silence/, /silence/. Each syllable corresponds to eight 6-by-1 spectral 

vectors that are deployed in time over a period of 25 ms each. The generative model therefore 

generates the output of continuous TF patterns as a sequence of “chunks” of 25 ms.   

We next describe in detail the three submodels: 

a. Discrete non-nested: context to lemma via semantic (dependency) and syntax (linearization) 

The context level consists of two independent factors: the context c and the sentence type 

Ty. Together, they determine the probability distribution of four semantic roles: the agent 

sA, the relation sR, the patient sP, and the modifier sM. An important assumption of the model 

is that states of context, type and semantic roles are maintained throughout the sentence as 

if they had      memory. These semantic roles generate a sequence of lemmas in the 

subordinate level, whose order is determined by the syntax, itself determined by the 

sentence type. This generative model for the first to the nth lemma is (  denotes the 

collection of all semantic factors ): 

 

Here, p(c) is the prior distribution for the context. The prior probability for the sentence type 

p(Ty) was fixed to be equal between “property” and “event”.  

The terms  can be further expanded as: 

 
When Ty=’event’, the sentence consists of an agent, a patient, a relation between the agent 

and the patient, and a null (empty) modifier.  When Ty=’property’, the sentence consists of 

an agent, a modifier that describes the agent, a relation that links the agent and the 

modifier, and a null patient.   

To translate the static context, type and semantic states into ordered lemma sequences, we 

constructed a minimal (linear) syntax model consistent with English grammar. We constrain 

all possible sentences to have four syntactic elements syn1-syn4, values are [‘attribute’, 

‘subject’, ‘verb’, ‘object’, ‘adjective’}. The probability of synn is dependent solely on Ty. 

The syntactic element syni is active during the ith epoch, and each possible value of the 

syntax (except ‘attribute’ that directly translates to a lemma item randomly determined 
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within [‘one more’ and ‘that’}) corresponds to one semantic factor (semantic factors in the 

model include subject, verb, object and adjective): 

Subject—agent ; Verb—relation ; Object—patient ; Adjective—modifier 

Thus, sentences of the “event” type are always expressed in the form of subject-verb-object 

(SVO), and those of the “property” type in the form of subject-verb-adjective (SVadj). In the 

ith lemma epoch, the model picks the current semantic factor via the value of syni and finds a 

lemma to express the value (state) of this semantic factor, using its internal knowledge of 

mapping between abstract, nonlinguistic concepts to lexical items (summarized in the form 

of a dictionary in Appendix I). Note that the same meaning can be expressed by more than 

one possible lemma, and several different meanings can result in the same lemma, causing 

ambiguity. The mapping from L2 to L3 can be defined separately for each lemma as follows:   

● The first lemma (w1 the attribute) does not depend on semantics or syntax and the 

model would generate “one more” or “that” with equal probability (p=0.5).  

● w2 and w3 are selected according to agent and patient values, respectively, which 

are themselves constrained by context.  

● w4 can be either a patient or a modifier depending on Ty.  

Prior probabilities of context and type, as well as probabilistic mappings between levels 

(eq.2-4), are all defined in the form of multidimensional arrays. Detailed expressions and 

default values can be found in Appendix II.   

b. Discrete nested: lemma to spectral 

Over time, factors periodically make probabilistic transitions between states (not necessarily 

different). Different model levels are connected in that during the generative process, 

discrete hidden (true) states of factors in a superordinate level (Ln) determine the initial 

state of one or more factors in the subordinate level (Ln+1). The Ln+1 factors then make a fixed 

number of state transitions. When the Ln+1 sequence is finished, Ln makes one state 

transition and initiates a new sequence at Ln+1. State transitioning of different factors within 

the same level occurs at the same rate. We refer to the time between two transitions within 

each level as one epoch of the level. Thus, model hierarchies are temporally organized in 

that lower levels evolve at higher rates and are nested within their superordinate levels.  

The formal definition of the discrete generative model is shown in eq.1, where the joint 

probability distribution of the mth outcome modality (here generally denoted by om, specified 

in following sections) and hidden states (generally denoted by sn) of the nth factor up to a 

time point τ, is determined by the priors over hidden states at the initial epoch P(sn, 1), the 

likelihood mapping from states to outcome P(o|s) over time 1:τ, and the transition 

probabilities between hidden states of two consecutive time points P(sn, t|sn, t-1) up to t=τ: 

 

For lower discrete levels, representational units unfold linearly in time, and a sequence of 

subordinate units can be entirely embedded within the duration of one superordinate 

epoch. Therefore, the corresponding models are implemented in a uniform way: the hidden 

state consists of a “what” factor that indicates the value of the representation unit (e.g. the 

lemma ‘the tennis’), and a “where” factor that points to the location of the outcome 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.01.486694doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486694
http://creativecommons.org/licenses/by-nc-nd/4.0/


(syllable) within the “what” state (e.g. the 2nd location of ‘tennis’ generates syllable ‘/nis/’). 

During one epoch at each level (e.g. the entire duration of the lemma “the tennis”), the 

value of the “what” factor remains unchanged with its transition probabilities set to the unit 

matrix. The “where” factor transitions from 1 to the length of the “what” factor, which is the 

number of its subordinate units during one epoch (three syllables per lemma). Together, the 

“what” and “where” states at the lemma level generate a sequence of syllables by 

determining the prior for “what” and “where” states in each syllable. In the same fashion, 

each syllable determines the prior for each spectral vector. Thus, the syllable level goes 

through 8 epochs, and for each epoch the output of the syllable level corresponds to a 

spectral vector of dimension (1 x 6, number of frequency channels). This single vector 

determines the prior for the continuous submodel.   

Such temporal hierarchy is roughly represented in Figure 1B (downward arrows).  

Unlike L1 and L2 states that are maintained throughout the sentence, states of the lemma 

level and below are “memoryless”, in that they are generated anew by superordinate states 

at the beginning of each epoch. This allows us to simplify the model inversion (see next 

section) using a well-established framework that exploits the variational Bayes algorithm for 

model inversion (Friston et al., 2017). The framework of Friston et al. (Friston et al., 2017) 

consists of two parts: hidden state estimation and action selection. In our model, the listener 

does not perform any overt action (the state estimates do not affect state transitioning), 

therefore the action selection part is omitted.  

Using the notation of Eq.1, parameters of the generative model are defined in the form of 

multidimensional arrays:  

Probabilistic mapping from hidden states to outcomes:  

Probabilistic transition among hidden states:  

Prior beliefs about the initial hidden states:  

For each level we define A, B, D matrices according to the above description of hierarchical 
“what” and “where” factors: 

● Probability mappings (matrix A) from a superordinate “what” to a subordinate 

“what” states are deterministic, e.g. p(sylb=’/one/’|lemma=’one more’, where=1)=1, 

and no mapping is needed for “where” states;  

● Transition matrices (B) for “what” factors are all identity matrices, indicating that 

the hidden state does not change within single epochs of the superordinate level;  

● Transition matrices for “where” factors are off-diagonal identity matrices, allowing 

transition from one position to the next; 

● Initial states (D) for “what” factors are set by the supraordinate level, and always 

start at position 1 for “where” factors. 

c. Continuous: acoustic to output  

The addition of an acoustic level between the syllable and the continuous levels is based on 
a recent biophysically plausible model of syllable recognition, Precoss (Hovsepyan et al., 
2020). In that model syllables were encoded with continuous variables and represented, as 
is the case here, by an ordered sequence of 8 spectral vectors (each vector having six 
components corresponding to six frequency channels).  In the current model we only 
implemented the bottom level of the Precoss model (see also (Yildiz et al., 2013)), which 
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deploys spectral vectors into continuous temporal patterns. Specifically, the outcome of the 
syllable level sets the prior over the hidden cause, a spectral vector I that drives the 
continuous model. It represents a chunk of the time-frequency pattern determined by the 
“what” and “where” states of the syllable level sω and sγ respectively:   

 

The noise terms εI is random Gaussian fluctuation. TFωγ stands for the average of the 6x200 
TF matrix of syllable ω in the γth window of 25 ms. G and W are 6x6 connectivity matrices 
that ensure the spectral vector I determines a global attractor of the Hopfield network that 
sets the dynamics of the 6 frequency channels. Values of G, W and a scalar rate constant κ in 
eq. 9-10 are the same as in Precoss: 

 

The continuous state of x determines the final output of the generative model v, which is 
compared to the speech input during model inversion. As x, v, is a 6x1 vector: 

 
The precision of the output signal depends on the magnitude of the random fluctuations in 
the model (ε in eq. 8, 10, 11). During model inversion, the discrepancy between the input 
and the prediction of the generative model, i.e. the prediction error, are weighted by the 
corresponding precisions and used to update model estimates in generalized coordinates 
(Friston et al., 2008). We manipulated the precisions for continuous state x and activities of 
frequency channels v to simulate intact (HP) and impaired (LP) peripheries. The precision for 
top-down priors from the syllable level, Ps, was kept high for all simulations (see Table 2 for 
values used in different conditions). 
The continuous generative model and its inversion were implemented using the ADEM 
routine in the SPM12 software package (Neuroimaging, 2014), which integrates a generative 
process of action. Because we focus on passive listening rather than interacting with the 
external world, this generative process was set to identical to the generative model and 
without an action variable. Precisions for the generative process were the same for all 
simulations (Table 3). 
 

Table 3. Precisions 

Precision  Generative model: HP Generative model: LP Generative process 

Px  exp(16) exp(0) exp(16) 

Pv  exp(16) exp(0) exp(16) 

PI  exp(8) exp(8) exp(8) 

 

3. Model inversion 

The goal of the modeled listener is to estimate posterior probabilities of all hidden states given 

observed evidence p(s|o), which is the speech input to the model, here represented by TF 

patterns sampled at 1000 Hz. This is achieved by the inversion of the above generative model 

using the variational Bayesian approximation under the principle of minimizing free energy 

(Friston et al., 2006). Although this same computational principle is applied throughout all model 

hierarchies, the implementation is divided into three parts corresponding to the division of the 

generative model. Because the three “submodels” are hierarchically related we follow and adapt 

the approach proposed in (Friston et al., 2017), which shows how to invert models with 
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hierarchically related components through Bayesian model averaging. The variational Bayes 

approximation for each of the three submodels is detailed below.  

Overall, the scheme results in a nested estimation process (Figure 1B). For a discrete-state level 

Ln, probability distributions over possible states within each factor are estimated at discrete 

times over multiple inference epochs. Each epoch at level Ln starts as the estimated Ln states 

generate predictions for initial states in the subordinate level Ln+1, and ends after a fixed number 

of state transitions (epochs) at Ln+1. State estimations for Ln are then updated using the 

discrepancy between the predicted and observed Ln+1 states. The Ln factors make transitions into 

the next epoch immediately following the update, and the same process is repeated with the 

updated estimation. Different model hierarchies (from L2 on) are nested in that the observed Ln+1 

states are state estimations integrating information from Ln+2 with the same alternating 

prediction-update paradigm, but in a faster timescale. A schematic of such a hierarchical 

prediction-update process is illustrated in Figure 1B. 

Since levels “lemma” to the continuous acoustic output conform to the class of generative 

models considered in (Friston et al., 2017), we use their derived gradient descent equations and 

implementation. Levels “context” and “semantic and syntax” do not conform to the same class 

of discrete models (due to their memory component and non-nested temporal characteristics); 

we therefore derived the corresponding gradient descent equations based on free energy 

minimization for our specific model of the top two levels Equations 2-4 (see Appendix III for the 

derivation) and incorporated them into the general framework of (Friston et al., 2017).  

The variational Bayes approximation for each of the three submodels is detailed below.  

a. Lemma to context 

For all discrete-state levels, the free energy F is generally defined as: (Friston et al., 2006).  

 

In eq. 12 and 13, Q(s) denotes the estimated posterior probability of hidden state s, P(o|s) 

the likelihood mapping defined in the generative model, and P(s) the prior probability of s. 

The variational equations to find the Q(s) that minimizes Free energy can be solved via 

gradient descent. We limit the number of gradient descent iterations to 16 in each update to 

reflect the time constraint in neuronal processes.  

Although context/type and semantic/syntax are modeled as two hierarchies, we assign them 

the same temporal scheme for the prediction-update process at the rate of lemma units, i.e. 

they both generate top-down predictions prior to each new lemma input, and fulfill bottom-

up updates at each lemma offset. Therefore, it is convenient to define their inference 

process in conjunction. 

The posterior distribution  is approximated by a 

factorized one, , and is parameterized as follows: 
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Here, the model observation is the probability of the word being wτ given the observed 

outcome oτ, p(wτ| oτ), which is gathered from lower-level models described in next sections. 

We denote p(wτ| oτ) by a vector Wi
τ , where τ stands for the epoch, and i indexes the word in 

the dictionary. At the beginning of the sentence, the model predicts the first lemma input, 

which is, by definition, just one of the two possible attributes, ‘one more’ or ‘that’. 

 

The lower levels then calculate p(w1|o1) and provide an updated Wi
1 that incorporates the 

observation made from the first lemma. This is passed to the top levels to update L1 and L2 

states. Following this update, the next epoch is initiated with the prediction for w2. Because 

w2 does not directly depend on lemma inputs before and after itself, we can derive the 

following informed prediction of w2 from eq.2, where prior for L1 and L2 factors are replaced 

by their updated posterior estimates: 

 

Where we used: 

 

During the second epoch, the model receives input of the second lemma and updates the 

estimation of Wi
2. The updated Wi

2 is then exploited to update L1 and L2 states, which in turn 

provides the prediction for w3. The process is repeated until the end of the sentence. 

The updating of L1 and L2 states, i.e. the estimation of their posterior probabilities after 

receiving the nth lemma input relies on the minimization of the total free energy F1,2 of the 

two levels (L1, L2) 

 

The expanded expression of F1,2 and derivation of the gradient descent equations can be 

found in Appendix III.  

b. Spectral to lemma 
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The memoryless property of lower-level (lemma and below) states implies that the 

observation from the previous epoch does not directly affect the prediction for the new 

epoch, only indirectly through the evidence accumulated at superordinate levels. The 

framework from Friston et al. (Friston et al., 2017) is suitable for such construction. It uses 

the same algorithm of free-energy (inserting eq. 5-7 to eq. 12-13) minimization for posterior 

estimation, but this time there is conditional independence between factors in the same 

level. We implemented this part of the model by adapting the variational Bayesian routine in 

the DEM toolbox from the SPM12 software package (Neuroimaging, 2014). 

  

c. Continuous to spectral 

To enable the information exchange between the continuous and higher discrete levels that 

were not accounted for in Hovsepyan et al. (Hovsepyan et al., 2020), we implemented the 

inversion of the spectral-to-continuous generative model using the “mixed model” 

framework in Friston et al. (Friston et al., 2017). Essentially, the dynamics of spectral 

fluctuation determined by each spectral vector I (eq.8) is treated as a separate model of 

continuous trajectories, and the posterior estimation of I constitutes post-hoc model 

comparison that minimizes free energy in the continuous format. For a specific model m 

represented by spectral vector Im, the free energy F(t)m can be computed as (adapted from 

(Friston et al., 2017)):  

 

P(om) indicates the likelihood for the mth spectral vector (discrete). P(o(t)|Im) is the likelihood 

of observing the continuous input o(t) given the mth I vector, and P(o(t)|I) is the averaged 

likelihood over all possible I vectors. In this way, the model compares the top-down 

prediction of I and the estimate derived from the bottom-up evidence of integrated acoustic 

input over 25ms. Detailed explanation of the algorithm can be found in previous studies 

(Friston et al., 2017, Friston and Penny, 2011). The software implementation was also 

adapted from existing routines in the DEM toolbox of SPM12 (Neuroimaging, 2014). 

Information theoretic metrics 

Two metrics were derived from the belief updating process just described: the Kullback-Leibler (KL) 

divergence (Div), which characterizes the discrepancy between the current and previous state 

estimates of a factor, and entropy H that characterizes the uncertainty of the current state estimates 

of the factor. We denote the posterior probability of the ith possible state of an arbitrary factor at 

time point τ as qt
i . The divergence and entropy are defined as: 

 

These two (non-orthogonal) metrics provide a qualitative summary of the model response that can 
be linked to neurophysiological signals (see Result and Discussion).  
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Appendix 

Appendix I. Model parameters for lemma generation 

1. Possible states and prior belief (D matrix) for each factor 

a. Context level 

Context = {‘poker game’, ‘tennis game’, ‘night party’, ‘racing game’}, Nc = 4 

D{1} = [1.5 1 1 1] 

Type = {‘event’, ‘property’}, NTy = 2 

D{2} = [1 1] 

b. Semantic 

Agent = {‘card A’, ‘serve’, ‘run’, ‘card J’, ‘neckband’, ‘score’, ‘buzz’}, Na = 7 

Relation = {‘win’, ‘ruin’, ‘be’}, Nr = 3 

Patient = {‘tennis’, ‘poker’, ‘game’, ‘evening’, ‘null’}, Np = 5 

Modifier = {‘sufficient’, ‘unexpected’, ‘not pretty’, ‘not fair’, ‘high volume’, ‘high freq’, ‘null’}, Nm 
= 7 

Prior belief for semantic and syntax factors are calculated by multiplying the higher-level priors 
with probability mapping matrices defined in the next section. 

c. Syntax  

For syntax, we treat each epoch differently as if there is one factor syntax{i} for each epoch. 

Syntax{1-4} = {‘attribute’, ‘subject’, ‘verb’, ‘object’, ‘adjective’}, Nsyn = 5 

d. Lemma  

Lemma = {‘one more’, …, ‘sharp’}, Nw = 20. The matching between lemma and syntax + semantic 
is defined in Appendix I. Multiple meanings are arranged assuming meaning 1 is the major 
meaning, meaning 2 & 3 are less likely. 

2. Probabilistic mapping for the generative model 

In all mapping matrices, the first dimension represents the outcome factor, the 2nd and further 
dimensions represent states of the higher level. All matrices are normalized so that the first 
dimension add to 1. 

a. Context to semantic 

For the mapping from context c and sentence type Ty to a semantic factor s (s={ a’, ‘r’, ‘p’, ‘m’}), 
the model is defined by a 3-D matrix L{s}(Ns, Nc, NTy). Indices refer to the state of the factor, e.g. 
L{agent}(1, 1, 2) = p(agent=’card A’|context=’poker’, type=’property’).  

Context = ‘poker game’ = 1: 

L{agent}(‘card A’, 1, 1) = L{agent}(‘card A’, 1, 2) = 0.6, L{agent}(‘card J’, 1, 1) = L{agent}(‘card J’, 1, 
2) = 0.4 

L{relation}(‘win’, 1, 1) = 1, L{relation}(‘be’, 1, 2) = 1 

L{patient}(‘poker’, 1, 1) = 1, L{patient}(‘null’, 1, 2) = 1 

L{modifier}(‘null’, 1, 1) = 1, L{modifier}(‘sufficient’, 1, 2) = L{modifier}(‘unexpected’, 1, 2) = 0.5 

Context = ‘tennis game’ = 2: 
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L{agent}(‘serve’, 2, 1) = L{agent}(‘serve’, 2, 2) = 0.6, L{agent}(‘run, 2, 1) = L{agent}(‘run’, 2, 2) = 
0.4 

L{relation}(‘win’, 2, 1) = 1, L{relation}(‘be’, 2, 2) = 1 

L{patient}(‘tennis’, 2, 1) = 1, L{patient}(‘null’, 2, 2) = 1 

L{modifier}(‘null’, 2, 1) = 1, L{modifier}(‘sufficient’, 2, 2) = L{modifier}(‘unexpected’, 2, 2) = 0.5 

Context = ‘night party’ = 3: 

L{agent}(‘neckband’, 3, 1) = L{agent}(‘neckband’, 3, 2) = 0.6, L{agent}(‘buzz’, 3, 1) = 
L{agent}(‘buzz’, 3, 2) = 0.4 

L{relation}(‘ruin’, 3, 1) = 1, L{relation}(‘be’, 3, 2) = 1 

L{patient}(‘evening’, 3, 1) = 1, L{patient}(‘null’, 3, 2) = 1 

L{modifier}(‘null’, 3, 1) = 1 

L{modifier}(‘not pretty’, 3, 2) = L{modifier}(‘high volume’, 3, 2) = L{modifier}(‘high freq’, 3, 2) = 
1/3 

Context = ‘racing game’ = 4: 

L{agent}(‘score’, 4, 1) = L{agent}(‘score’, 4, 2) = 0.6, L{agent}(‘buzz’, 4, 1) = L{agent}(‘buzz’, 4, 2) = 
0.4 

L{relation}(‘ruin’, 4, 1) = 1, L{relation}(‘be’, 4, 2) = 1 

L{patient}(‘game’, 4, 1) = 1, L{patient}(‘null’, 4, 2) = 1 

L{modifier}(‘null’, 4, 1) = 1 

L{modifier}(‘not fair’, 4, 2) = L{modifier}(‘high volume’, 4, 2) = L{modifier}(‘high freq’, 4, 2) = 1/3 

b. Sentence type to syntax 

For syntax, we define the model Z for each epoch τ separately. Each Z{τ} is a Nsyn x NTy matrix, 
i.e. 5x2 

Z{1}(:, 1) = Z{1}(:, 2) = [1 0 0 0 0]. The first epoch is always ‘attribute’ 

Z{2}(:, 1) = Z{2}(:, 2) = [0 1 0 0 0]. The second epoch is always a subject 

Z{3}(:, 1) = Z{3}(:, 2) = [0 0 1 0 0]. The third epoch is always a verb 

Z{4}(:, 1) = [0 0 0 1 0], Z{4}(:, 2) = [0 0 0 0 1]. The fourth epoch could be either an object 
(sentence type=’event’) or an adjective (Ty=’property’). 

Now we can calculate priors for semantic and syntax (matrix multiplication is only 
demonstrative, not concerning matrix transposing in practice). 

Semantic: D{3-6}= L{1-4}*D{1}*D{2} 

Syntax: D{7}(:, τ) = Z{τ}*D{2} 

c. Semantic to lemma 

Because we have a one-to-one correspondence between syntax and semantic, we define the 
model A with Nsyn independent matrices, each mapping from the corresponding semantic 
factor to word, therefore Nw x Ns. 

Special case for A{1} because it does not need semantic information. Therefore A{1} is a Nw x 1 
matrix. A{1}(one more) = A{1}(that) = 0.5 
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A{2}(index, agent) = 1, where index is calculated by finding the dictionary entry for the 
corresponding agent. E.g. the 3rd agent state, ‘card J’, translates to ‘joker’ in the dictionary, 
which is at the 5th entry. Therefore A{2}(5, 3) = 1. The rest of semantic-lemma mappings are 
defined in the same fashion. 

When one semantic value corresponds to multiple lemma entries, e.g. the patient ‘tennis’ (1st 
patient) can be translated into either ‘the tennis’ (11th lemma entry), or ‘the game’ (13th), we 
give higher probability to the “meaning 1” mapping. A{4}(11, 1) = 0.8, A{4}(13, 1) = 0.2. 
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Appendix II. The mapping between lemma and semantic in the model’s mental lexicon 

 lemma Meaning 1 Meaning 2 Meaning 3 

1 'one more' 'extra' [] [] 

2 'that' 'that' [] [] 

3 'ace' 'card A' 'serve' [] 

4 'sprint' 'run' [] [] 

5 'joker' 'card J' [] [] 

6 'tie' 'neckband' 'score' [] 

7 'noise' 'buzz' [] [] 

8 'wins' 'win' [] [] 

9 'ruined' 'ruin' [] [] 

10 'is' 'be' [] [] 

11 'the tennis' 'tennis' [] [] 

12 'the poker' 'poker' [] [] 

13 'the game' 'game' 'tennis' 'poker' 

14 'the evening' 'evening' [] [] 

15 'enough' 'sufficient' [] [] 

16 'surprising' 'unexpected' [] [] 

17 'ugly' 'not pretty' [] [] 

18 'unfair' 'not fair' [] [] 

19 'loud' 'high volume' [] [] 

20 'sharp' 'high freq' [] [] 
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Appendix III. Full expression of free energy and gradient descent algorithm for the top-level model 
(L1 and L2) 
The expression of free energy (eq.16 in the main text) can be parameterized with respect to the 

posterior estimates of L1 and L2 factors  

 

We can then derive partial derivatives of F with respect to Q: 

 

To solve the above equations, we follow Friston et al. (2017) and define an auxiliary variable v for 

the estimation of each factor x. Let x ≡ σ(v), where σ() denotes the softmax function. We can then 

solve v and x using gradient descent:  
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